
Parked Vehicle Assisted VFC System with Smart
Parking: An Auction Approach

Yi Zhang
Graduate Institute of

Communication Engineering
National Taiwan University, Taiwan

Email: yzhang.cn@outlook.com

Chih-Yu Wang
Research Center for

Information Technology Innovation
Academia Sinica, Taiwan

Email: cywang@citi.sinica.edu.tw

Hung-Yu Wei
Graduate Institute of

Communication Engineering
National Taiwan University, Taiwan

Email: hywei@cc.ee.ntu.edu.tw

Abstract—Vehicular fog computing (VFC) is a promising
approach to provide ultra-low-latency service to vehicles and end
users by extending the fog computing to conventional vehicular
networks. Parked vehicle assistance (PVA), as a critical technique
in VFC, can be integrated with smart parking in order to exploit
its full potentials. In this paper, we propose a VFC system by
combining both PVA and smart parking. A single- round multi-
item parking reservation auction is proposed to guide the on-the-
move vehicles to the available parking places with less effort and
meanwhile exploit the fog capability of parked vehicles to assist
the delay-sensitive computing services. The proposed allocation
rule maximizes the aggregate utility of the smart vehicles and
the proposed payment rule guarantees incentive compatible,
individual rational and budget balance. The simulation results
confirmed the win-win performance enhancement to fog node
controller (FNC), vehicles, and parking places from the proposed
design.

I. INTRODUCTION

With the rapid growth of connected devices in Internet
of Things (IoT)-based network systems and new applications
and services for 5G, such as virtual reality (VR), augmented
reality (AR) and real-time online gaming, fog computing plays
an important a role to provide low latency data service by
offloading the urgent computation workload from cloud date
centers. Vehicular fog computing (VFC) is one of the potential
applications by extending the fog computing to conventional
vehicular networks [1]. To cope with the explosive application
demands, roadside units (RSUs), which are generally deployed
in different areas of a city, can easily be upgraded by equipped
with fog computing servers to provide both communication
and computation services to those mobile terminals. However,
the fog computing service is limited due to the density
of RSUs. Moreover, RSUs confront heavy load with the
increasing number of service requests. The idea of parked
vehicle assistance (PVA) has been investigated to be useful
to deliver content in vehicular ad hoc networks (VANETs)
where the number of RSUs is insufficient [2–6]. Note that
by sharing and exchanging contents with moving vehicles,
the parked vehicles act as static infrastructures to improve
connectivity. The exploit of parked vehicles as infrastructures
for both communication and computation is recognized as an
important component of the future VFC systems [7].

On the other hand, due to the increase population and spatial
resource of a city, limited parking places cause severe parking

issues. Previous study shows that a large portion of traffic
intensity in major city is due to the congestion caused by the
vehicles searching for a parking slot [8]. Besides, unnecessary
time and energy of vehicles is wasted during their searching
for parking. To guide the vehicles to the available parking slots
with less effort, time and fuel consumption, smart parking
system (SPS) has been widely investigated [9]. Nevertheless,
most proposed designs are limited to solely satisfy the parking
demands. The potential benefits of smart parking in other
domains, such as VFC, is not explored yet.

We find that by integrating PVA and smart parking, we
potentially provide a more robust VFC system with lower
cost and higher satisfactory to all participants. Consider that
smart parking with reservation (pre-booked) not only benefits
to mitigate the traffic congestion and reduce unnecessary
driving expenses but also offers an opportunity to lead moving
vehicles to the available parking places nearby the areas where
the delay-sensitive computing services are not inadequate.
The vehicles with fog capability could be attracted to park
at proper parking spaces and provide fog services through
smart parking price and/or additional compensations from fog
service provider. Moreover, the network operator can save a
part of deployment expense and maintenance cost with the aid
of parked vehicles.

In this paper, we propose a practical VFC system by
combining both PVA and smart parking. A single-round multi-
item parking reservation auction is provide to guide the on-
the-move vehicles to the available parking places with less
effort and meanwhile exploit the fog capability of parked
vehicles to assist the delay-sensitive computing services. The
proposed system motivates the parked vehicles by paying
a certain amount of monetary rewards to compensate their
service cost. The proposed allocation rule maximizes the ag-
gregate utility of the smart vehicles and the proposed payment
rule guarantees incentive compatible, individual rational and
budget balance.

Related Work

The potential of PVA is investigated in the literature.
The results in [2] show that even a small proportion of
PVA vehicles can greatly promote the network connectivity.
Theoretic analysis, realistic survey and simulation of PVA
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Fig. 1. Local network scenario

are investigated in [3]. The fairness in exploiting the energy
resources of parked vehicles is considered in [4] to extend the
RSU service coverage, which is constrained to not excessively
drain parked vehicle batteries. D2D-based content delivery
is proposed in [5], where parked vehicles around the street
form vehicular social communities with the moving vehicles
passing along the road through D2D communications. A
Stackelberg game has been developed to obtain the equilib-
rium of the competition and cooperation among RSUs, moving
vehicles and parked vehicles during the content delivery [6].

A dynamic resource allocation, reservation, and pricing
smart parking system is proposed to minimize the overall sys-
tem cost [10]. However, the uncoordinated selfish behavior of
drivers is not addressed and will potentially degrades the sys-
tem efficiency. A demand-based parking pricing mechanism
is proposed by predicting the occupancy rate of individual
parking areas using machine learning approach [11], where
an amount of historical parking data are required.

To best of our knowledge, the idea of combining both VFC
and smart parking is not explored in the literature yet.

II. PROBLEM FORMULATION

The proposed parked vehicle assisted VFC system is
shown in Fig. 1. In the system, we assume a set of H =
{h1, h2, · · · , hK} to represent K hotspots. Each hotspot
consists of multiple end-user devices carrying with delay-
sensitive computation requests for external computing service.
To guarantee the service requirements, sufficient fog nodes
(FNs) have been deploy near each hotspot to serve those end
users. A fog node controller (FNC) is considered to manage
those FNs. Besides, we assume a set of B = {b1, b2, · · · , bN}
to denote total N on-the-move vehicles (moving on the road
with certain trip destinations). Some of them equipped with
limited computing resources, called fog-capable vehicles, have
potential to offload the computation workload from the FNs
near the hotspots when they are also parked nearby. There
are M parking places own by private parking operators,
denoted by S = {s1, s2, · · · , sM}, which provide parking
service to those vehicles searching for parking slots. The real-

time information about parking availability can be collected
by parking sensors. We consider a time-slotted system and
formulate as follows:

1) Parking places: We introduce xi,j(t) to indicate the
arrive event for parking:

xi,j(t) =

{
1 if bi park at sj at period t,
0 otherwise. (1)

The departure event is denoted by yi,j(t) as

yi,j(t) =

{
1 if bi parked at sj leave at period t,
0 otherwise. (2)

For parking place sj ∈ S , the geo-location is known as
X s

j ∈ R2 (GPS coordinates). We denote Cj as the overall
parking capacity of sj . Then, the parking slot inventory at
period t can be calculated by

Cj(t) = Cj −
∑
bi∈B

t−1∑
t′=1

xi,j(t
′) +

∑
bi∈B

t∑
t′=1

yi,j(t
′). (3)

2) Vehicles: We introduce a binary indicator wi,j : If vehicle
bi stay at place sj at period t then wi,j = 1; Otherwise,
wi,j = 0. Therefore, those vehicles (bi ∈ B) with the condition∑
sj∈S

wi,j = 0 are on-the-move vehicle.

For on-the-move vehicle bi ∈ B searching for a parking
slot, the current car position and the traveling destination
are known as X cur

i and X dest
i , respectively. Vehicle bi can

measure its average driving speed rdi through the historical
information. In this paper, we assume that the average walking
speed of human is rw in general. Besides, we define Φr(·)
as the distance function by city roads (similar to Manhattan
distance). If vehicle bi determines to park at place sj , the
remaining driving time and the walking time will be

τdi,j = Φr(X cur
i ,X s

j )/r
d
i and τwi,j = Φr(X s

j ,X dest
i )/rw. (4)

Therefore, the total traveling time will be τi,j = τdi,j + τwi,j .
We define the driving energy cost as cdi,j = θτdi,j , where θ is
the per unit driving energy cost. The total cost of both driving
and walking can be estimated by

ci,j = cdi,j + δτi,j , (5)

where δ is a positive constant translates traveling time to cost.
Furthermore, we define CPU as the unit amount of comput-

ing resource, which has the service rate µ (in CPU cycle per
bit). A vehicle bi can provide computing service if mi ̸= 0,
where mi is the number of CPUs equipped at bi and reflects
its fog capability. We assume that a parked vehicle will only
serve at most one hotspot during its parking duration ∆i.

3) Hotspots: For hotspot hk ∈ H, the central geo-location
is known as X h

k . We assume that the FNC is capable to predict
the amount of computing service requests from end users at
hk for a short period in the future, which is represented by
mean workload arrival rate λk. We allocate the workload to
each CPU evenly. That is, we have λ̂k = λk/mk, where λ̂k is
the offloaded arrival rate per CPU and mk is the given total



number of CPUs required by hotspot hk by considering its
delay requirements.

We introduce a binary indicator as follows:

zi,k =

{
1 if bi provide service to hk,
0 otherwise. (6)

If vehicle bi provides computing service to hk (zi,k = 1) at
sj (wi,j = 1), the quality-of-service (QoS) can be measured
in terms of service delay [12]:

dki,j = qki,j + hk
i,j , (7)

which consists of the queuing delay qki,j (CPU load) and the
network delay hk

i,j (data deliver). Consider parallel M/G/1
processor sharing queues [13, 14], the queuing delay is

qki,j =
λ̂kmi,j

µ− λ̂kmi,j

mi,j

=
λ̂kmi,j

µ− λ̂k

, (8)

where mi,j is the number of CPUs provided by bi at sj .
According to [12], the network delay is defined as

hk
i,j = hj,k = ξΦl(X s

j ,X h
k ), (9)

where hj,k is the network delay between the parking place
sj and the hotspot hk, ξ is a scalar and Φl(·) is the air line
distance function. Furthermore, we define the energy cost of
computing service [15] as

cki,j = α
λ̂km

2
i,j

µ
+ βΦl(X h

k ,X s
j ). (10)

Furthermore, we define Dk as the maximum delay toleration
of hk. That is to say, the parked vehicle bi can serve hotspot
hk at sj only when dki,j ≤ Dk.

We assume that the FNC manages a sufficient number of
nearby FNs to meet the service requirements. An energy cost
function C(mf

k) is defined, where mf
k is the number of CPUs

required to be turned on at nearby FNs of hotspot hk:

mf
k = mk −

∑
bi∈B

∑
sj∈S

wi,jzi,kmi,j . (11)

Note that C(mf
k) is a strictly convex and increasing function

subject to mf
k . Without loss of generality, we define C(mf

k)
as

C(mf
k) = αf λ̂k(m

f
k)

2

µ
, (12)

which is similar to equation (10) and the network cost is
ignored.

So far, we have described all the mathematical formulations.
Consider that the FNC can achieve energy saving by turning
off redundant FNs when the computation workload from the
FNs near the hotspots is offloaded by those vehicles pared
at the parking places. To attract the fog-capable vehicles
carried with CPU resources to the expected parking places,
the FNC needs to pay a certain amount of monetary rewards
for service offloading. The goal of the FNC is to minimize
its cost of satisfying the demands of all end-users in all
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Fig. 2. Time sequence of parking reservation

hotspots under the constraint that the profit of each hotspot
should be non-negative, which is represented by its cost saving
by offloading workloads to parked vehicles minus the total
offload payments. Each on-the-move vehicle, on the other
hand, aims to maximize its own utility when requesting for
parking reservation service. They may compete with each
other for preferred parking slots. It motivates us to employ
a parking reservation auction to regulate the proposed VFC
system.

III. AUCTION DESIGN

In this section, a single-round multi-item parking reserva-
tion auction is presented to guide the on-the-move vehicles
to the available parking places and meanwhile regulate the
parked vehicles to assist the delay-sensitive computing ser-
vices. We provide the strategies of the smart vehicles. We
also devise an allocation rule and a payment rule to guarantee
the desired economic properties, such as incentive compatible
and individual rationality.

A. Auction Model

The FNC acts as a auctioneer, who periodically holds
the parking reservation auction. An offload price aj,k is
announced for per CPU resource provided by parked vehicles
at sj to hotspot hk. The parking place operators are sellers
and each of them provides homogeneous goods, saying the
unoccupied parking slots. A reserve price psj (minimum ac-
ceptable) is charged per unit time if the vehicle choose to park
at sj . The on-the-move vehicles, which act as buyers / bidders,
request for parking reservation service. They aim to maximize
the own utility by considering cost, price, proximity, service
income, etc.

We define a reservation deadline ∆t ahead of parking
reservation point, as shown in Fig. 2. The reservation auction
is formulated on a rolling horizon of ∆t intervals an starts at
the decision point (t−∆t) periodically. If vehicle bi chooses
to park at sj , the parking reservation duration will be

τ ri,j = τdi,j +∆i −∆t. (13)

Then, the parking duration between arrives and departs of
bi is known as [T in

i,j , T
out
i,j ], where T in

i,j = t − ∆t + τdi,j and
T out
i,j = T in

i,j +∆i.
The proposed reservation auction is presented as follows:



• Step 1: On-the-move vehicles request for parking reserva-
tion service to the FNC.

• Step 2: The FNC collects the occupancy information Cj(t)
and reserve prices psj from parking places. And then, the
FNC announces the offload price aj,k, reserve price psj to
the smart vehicles.

• Step 3: The vehicles submit the bidding vectors to the FNC.
• Step 4: The FNC applies predefined allocation rule and

payment rule to determine the parking allocation and the
corresponding parking payment.

B. Strategies

1) Vehicles: Let vi denote the value of successful parking
to bi. The utility of bi parking at sj is

ui,j = vi,j − τ ri,jp
s
j , where (14)

vi,j =


vi − ci,j +

∑
hk∈H

zi,k∆i(aj,kmi,j − cki,j)

if τdi,j ≥ ∆t, τwi,j ≤ Tw
i and τi,j ≤ Ti,

0 otherwise,

(15)

is the true valuation. Tw
i and Ti are the maximum tolerant

walking time (maximum distance bi would like to walk
from the reserved parking place to the destination) and the
maximum tolerant traveling time of bi, respectively. vi,j is
regarded as the bidding of bi to sj . Therefore, the set of smart
vehicles is defined as Bb = {bi | vi,j > 0,∃sj}. Besides, we
denote Hj as the candidate hotspots served by the parked
vehicles at sj , where hj,k < Dk for ∀hk ∈ Hj . Accordingly,
the candidate parking places of hotspot hk is denoted by Sk,
where hk ∈ Hj for ∀sj ∈ Sk.

The amount of CPU resource vehicle bi would contribute
to the FNC will depend on the benefit he/she may gain minus
the cost. A hard constraint is that the service delay cannot
surpass the maximum delay toleration Dk, that is,

dki,j ≤ Dk ⇒ λ̂kmi,j

µ− λ̂k

+ ξΦl(X s
j ,X h

k ) ≤ Dk

⇒ mi,j ≤
(µ− λ̂k)(Dk − ξΦl(X s

j ,X h
k ))

λ̂k

. (16)

To achieve the maximum utility when parking at sj , bi needs
to select its serving hotspot and the corresponding optimal
number of offered CPUs:

{k∗,m∗
i,j} = argmax

mi,j

(aj,kmi,j − cki,j), k ∈ Hj

s.t. mi,j ∈ {1, · · · ,mi},

mi,j ≤
(µ− λ̂k)(Dk − ξΦl(X s

j ,X h
k ))

λ̂k

,∀hk ∈ Hj (17)

Note that it is possible for bi that any offer will give it negative
utility due to insufficient compensation from the FNC. In such
a case, bi chooses to park at sj without providing offload
service. Therefore, the bidding vector of bi to sj is represented
as {vi,j , k∗,m∗

i,j}.

2) FNC: With the service aid of parked vehicles, the cost
saving at hk will be

∆cost
k = C(mk)− C(mf

k). (18)

Therefore, the FNCs instantaneous profit is represented as∑
hk∈H

∆cost
k −

∑
bi∈B

∑
sj∈Si

∑
hk∈H

wi,jzi,kmi,jaj,k. (19)

We consider non-negative profit for each hotspot, that is,

∆cost
k −

∑
bi∈B

∑
sj∈Si

wi,jzi,kmi,jaj,k

=2α
λ̂kmk

µ

∑∑
wi,jzi,kmi,j

− α
λ̂k

µ
(
∑∑

wi,jzi,kmi,j)
2 −

∑∑
wi,jzi,kmi,jaj,k

≥2α
λ̂kmk

µ

∑∑
wi,jzi,kmi,j

− α
λ̂kmk

µ

∑∑
wi,jzi,kmi,j −

∑∑
wi,jzi,kmi,jaj,k

=
∑∑

wi,jzi,kmi,j(α
λ̂kmk

µ
− aj,k) ≥ 0. (20)

Therefore, we have

aj,k ≤ α
λ̂kmk

µ
. (21)

On the other hand, to attract those fog-capable vehicles
that park at sj and meanwhile provide computing services
to hotspot hk, the FNC needs to guarantee the constraint
aj,kmi,j − cki,j > 0, that is,

aj,kmi,j − α
λ̂km

2
i,j

µ
− βΦl(X h

k ,X s
j ) > 0. (22)

Note that the quadratic function in the above constraint is an
upside-down parabola with respect to mi,j . The FNC needs
to guarantee its discriminant as follows:

∆ = a2j,k −
4αβλ̂kΦ

l(X h
k ,X s

j )

µ
> 0. (23)

That is to say, the offload price should satisfy

aj,k >

√
4αβλ̂kΦl(X h

k ,X s
j )

µ
. (24)

So far, the FNC can announce fixed offload price aj,k subject
to the constraints (21)(24).



C. Allocation Rule

The objective of the allocation rule is to maximize the
aggregate utility of the smart vehicles in Bb:

w∗
i,j = argmax

wi,j

∑
bi∈Bb

∑
sj∈S

wi,j(vi,j − τ ri,jp
s
j),

s.t. wi,j ∈ {0, 1},∀bi ∈ Bb,∀sj ∈ S∑
sj∈S

wi,j ≤ 1,∀bi ∈ Bb∑
bi∈Bb

wi,j ≤ Cj(t),∀sj ∈ S

wi,j(vi,j − τ ri,jp
s
j) ≥ 0 (25)

Lemma 1. The allocation problem (25) can be modified as a
maximum weight b-matching problem in a weighted bipartite
graph (WBG).

Proof. In a weighted bipartite graph, the vertices can be
decomposed into two disjoint sets U and V such that every
edge with an associated weight connects a vertex in U to the
other in V . A maximum weighted b-matching problem in a
WBG is defined as a matching where the sum of the weights of
all edges in the matching has a maximal value and each vertex
in U matches at least 1 and at most b(v) vertices in V . In the
allocation problem (25), we construct a WBG G = (U, V,E)
with two disjoint sets, the set of parking places U = S and
the set of smart vehicles V = Bb. The weight A(bi, sj) of
the edge connecting sj and bi represents the utility of bi if
parks at sj . Parking place sj matches at most Cj(t) smart
vehicles since its parking slot inventory at period t is Cj(t).
And a smart vehicle can be assigned to one parking slot. In
this way, the problem (25) is modified as a maximum weight
b-matching problem in WBG.

Lemma 2. The allocation problem (25) can be transformed
into a maximum weight perfect bipartite matching (MWPBM)
problem.

Proof. To fits classic 1-matching problem, we duplicate
the original WBG G = (U, V,E) to a new WBG
G′ = (U ′, V, E′), where U ′ = {U1, · · · , UM}, Uj =
{sj,1, · · · , sj,Cj(t)} and sj,n is the n-th parking slot of parking
place sj . An identical weight is assigned between the parking
slots in the same place and a vertex in V , that is, A(bi, sj,n) =
A(bi, sj). Furthermore, we transform G′ to a complete WBG
G′′ = (U ′′, V ′, E′′) by adding some virtual vertexes and
virtual edges so that |U ′′| = |V ′| = max{

∑
sj∈S Cj(t), |Bb|}

and every vertex in U ′′ is connected to every vertex in V ′. For
those virtual vertexes, the weighted of the link is changed to
be zero. In this way, we aims to find a matching of G′′ where
every vertex in (U ′′ ∪ V ′) is incident to exactly one edge.
Therefore, the allocation problem (25) become a MWPBM
problem.

We know that classic Kuhn-Munkres (KM) algorithm (also
known as Hungarian algorithm) [16, 17] can be exploited to
solve MWPBM problem, which has the complexity of O(N3).

Therefore, the allocation problem (25) can be solved with the
complexity of O(N3).

D. Payment Rule
The goal is to find a payment rule that satisfies the desired

economic properties in a socially optimal manner subject to
the reserve price constraint. Vickrey Clarke Groves (VCG)
mechanism is widely used in auction design that gives bidders
an incentive to bid their true valuations. We modify the VCG
mechanism with Clarke pivot payments [18]. Let {wi,j} and
{ŵi,j} be the allocation results of problem (25) with and
without bi’s participation, respectively. Then, the payment for
bi can formally be written as

pbi =


τ ri,jp

s
j +

∑
bl ̸=bi

∑
so∈S

ŵl,o(vl,o − τ rl,op
s
o)

−
∑

bl ̸=bi

∑
so∈S

wl,o(vl,o − τ rl,op
s
o)

if bi wins a parking reservation at sj ,
0, if bi loses the auction.

(26)
In this way, the reserve price required by the parking places
can be guaranteed.

E. Economic Analysis
Theorem 1. The proposed auction is incentive compatible
(truthful for bidders).

Proof. In a truthful auction, all bidders are incited to volun-
tarily reveal their true valuation for the items they are bidding.
Let Vi be the true valuation vector of bi and V−i be the
valuation vectors of other smart vehicles Bb\{bi}. When Vi

and V−i are submitted, the utility of bi can be calculated using
the payment rule (26):

ui =
∑
sj∈S

wi,jvi,j − pbi

=
∑
sj∈S

wi,j(vi,j − τ rl,jp
s
j) +

∑
bl ̸=bi

∑
so∈S

wl,o(vl,o − τ rl,op
s
o)

−
∑
bl ̸=bi

∑
so∈S

ŵl,o(vl,o − τ rl,op
s
o). (27)

When V ′
i and V−i are submitted, the utility of bi is

u′
i =

∑
sj∈S

w′
i,jvi,j − pbi

=
∑
sj∈S

w′
i,j(vi,j − τ rl,jp

s
j) +

∑
bl ̸=bi

∑
so∈S

w′
l,o(vl,o − τ rl,op

s
o)

−
∑
bl ̸=bi

∑
so∈S

ŵl,o(vl,o − τ rl,op
s
o) (28)

Since {wi,j} maximizes the total profit defined by equation
(25), we have∑

sj∈S
wi,j(vi,j − τ rl,jp

s
j) +

∑
bl ̸=bi

∑
so∈S

wl,o(vl,o − τ rl,op
s
o)

≥
∑
sj∈S

w′
i,j(vi,j − τ rl,jp

s
j) +

∑
bl ̸=bi

∑
so∈S

w′
l,o(vl,o − τ rl,op

s
o).

(29)



TABLE I
LIST OF KEY SIMULATION PARAMETERS

αf , α, β, ξ 0.8, 0.6, 0.4, 0.001

δ, θ 10, $0.5/km

Cj , psj unif(5, 20), unif($1, $5)

µ, λk 1MB/s, unif(5MB/s, 20MB/s)

mi, mk unif(0, 5), 200

Dk unif(10ms, 50ms)

rw, rdi 3.5km/h, unif(10km/h, 30km/h)

∆t, ∆i 0.01h, unif(0.5h, 5h)

Tw
i , Ti 0.3h = 18min, 0.5h = 30min

By subtracting the term
∑

bl ̸=bi

∑
so∈S

ŵl,o(vl,o−τ rl,op
s
o) from both

sides of the inequality, we get ui ≥ u′
i, which means that the

incentive compatible property is hold.

Theorem 2. The proposed auction is individually rational.

Proof. The utility of the sellers and buyers should be no less
than zero. Each agent participating in the auction can expect
a non-negative utility. According to the payment rule (26), we
observe that the per unit payment from each parked vehicle
is greater than the reserved price announced by sellers since
pbi/τ

r
i,j ≥ psj if bi win a parking reservation at sj . That is, the

sellers can achieve non-zero utility. Besides, we consider the
utility of bi in equation (27) and have

ui =
∑
sj∈S

wi,j(vi,j − τ rl,jp
s
j) +

∑
bl ̸=bi

∑
so∈S

wl,o(vl,o − τ rl,op
s
o)

−
∑
bl ̸=bi

∑
so∈S

ŵl,o(vl,o − τ rl,op
s
o)

≥
∑
bl∈Bb

∑
so∈S

wl,o(vl,o − τ rl,op
s
o)

−
∑
bl∈Bb

∑
so∈S

ŵl,o(vl,o − τ rl,op
s
o) ≥ 0, (30)

which shows individual rationality of buyers.

Moreover, we know that the FNC can achieve non-negative
profit of each hotspot when announces the offload price
subject to the constraint (21). Therefore, budget balance is
hold in the proposed auction.

IV. SIMULATION RESULTS

In this section, simulation results are provided to verify
the performance of the proposed VFC. We consider a urban
map with 1km range, where parking places and hotspots
are uniformly scattered. The current car position and the
traveling destination are also initialized by following uniform
distribution. The key simulation parameters are listed in Table
I. Specifically, we assume that the parking valuation vi is pro-
portional to the parking duration ∆i, saying vi = 10∆i in our
simulations. We compare three approaches: 1) Conventional,
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Fig. 3. Performance versus the number of vehicles: K = 16; M = 8.

0 0.5 1 1.5 2 2.5

Increment of offload price

16

17

18

19

20

21

22

23

A
vg

. u
til

ity
 o

f v
eh

ic
le

s

Conventional
Greedy
Proposed

(a) Avg. utility of vehicles

0 0.5 1 1.5 2 2.5

Increment of offload price

125

130

135

140

145

150

155

160

165

170

# 
of

 a
ss

is
te

d 
C

P
U

s

Greedy
Proposed

(b) # of assisted CPUs

0 0.5 1 1.5 2 2.5

Increment of offload price

0

50

100

150

200

250

300

350

400
P

ro
fit

 o
f F

N
C

Conventional
Greedy
Proposed

(c) Profit of FNC

Fig. 4. Performance versus the increment of offload price: K = 16; M = 8;
N = 100.

without the aid of parked vehicles; 2) Greedy, in which the
vehicles are allocated according to greedy allocation; 3) and
Proposed, the proposed approach. The greedy allocation rule
is defined that the available parking slots is priority allocated
to the smart vehicle with maximum bidding value vi,j .

In Fig. 3, we show the performance versus the number of
vehicles. Allocation ratio of vehicle in Fig. 3(a) is calculated
by the number of those vehicles, which have been successfully
allocated parking slots, over the number of smart vehicles.
We observe that the allocation ratio decreases against the
number of vehicles due to the limited parking slots. Greedy
causes a great loss of successful parking reservation when
the number of vehicles is more than 100. However, Proposed
can satisfy almost all of smart vehicles. The decline in Fig.
3(b) indicates the intensified competition of smart vehicles for
preferred parking slots. Nevertheless, Proposed achieves best
average utility of vehicles comparing with Conventional and



Greedy. In Fig. 3(c), both Proposed and Greedy outperform
Conventional in terms of FNC’s profit since Conventional
doesn’t deliver any cost saving for the FNC. The maximum
average parking income per vehicle is achieved by Greedy, as
shown in Fig. 3(d), which means that the utility of the parked
vehicles will be degraded accordingly as we observed in Fig.
3(b). On the other hand, Proposed guarantees the benefits of
vehicles subject to the reserve price constraint and meanwhile
provide additional income to the parking places.

We then present the performance versus the offload price
in Fig. 4. The announced offload price is obtained by the
constraint in equation (21) plus a increment. We observe that
the average utility of vehicles increases against the offload
price because the compensation from the FNC becomes larger
and larger than the service cost. We also find out that higher
compensation, saying the offload price, can attracts more
parked vehicles to provide their CPUs in Fig. 4(b). Proposed
outperforms Greedy by attracting more CPUs for service
offloading and cost saving. Nevertheless, the profit of the
FNC is not always increasing due to the unnecessary offload
payments, as shown in Fig. 4(c). The overpriced offload
payment makes no increment to the number of assisted CPUs
and decreases the profit of the FNC. This suggests an optimal
choice of offload price exists and deserves further study in the
future.

V. CONCLUSION

In this paper, a single-round multi-item parking reservation
auction is proposed to guide the on-the-move vehicles to
the available parking places to provide PVA service while
satisfying their parking demands. We theoretically prove that
the fog-aware smart parking problem can be transformed to
maximum weight b-matching problem and the optimal alloca-
tion can be derived in polynomial time. Given this result, we
theoretically prove that the proposed auction design guarantees
incentive compatible, individual rational and budget balance.
The simulation results confirm the performance improvement
from the proposed design comparing with conventional and
greedy approaches, especially when the parking demand is
huge.
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